STUDIES ON STEREOSPECIFIC FORMATION OF P-CHIRAL INTERNUCLEOTIDE LINKAGE. SYNTHESIS OF $(\mathbb{R}_P, \mathbb{R}_P)$ - AND $(\mathbb{S}_P, \mathbb{S}_P)$ -THYMIDYLYL $(3', 5')$ THYMIDYLYL $(3', 5')$ THYMIDINE DI(O,O-PHOSPHOROTHIOATE) USING 2-NITROBENZYL GROUP AS A NEW S-PROTECTION

Z.J,Lesnikowski: M.M..Jaworska

Polish Academy of Sciences, Centre of Molecular and Macromolecular Studies, Department of Bioorganic Chemistry, 90-362 Lodz, Boczna 5, Poland

 $SUMMARY: (R_P, R_P)$ and (S_P, S_P) -diastereomers of thymidylyl(3',5')thymidylyl(3',5')thymidine di (0,0-phosphorothioate $(\underline{6})$ were prepared in the stereospecific reaction of (RF) - or (SF) -isomer of 5'-O-monomethoxytritylthymidine 3'-O-[O-(4-nitrophenyl)-S-(2-nitrobenzyl)phosphorothioate] (2) with 5'-OH activated 3'-O-acetylthymidine and subsequently with 5'-OH deprotected, 5'-OH **activated derivative of resulted dinucleotide 3.**

Among the chiral at phosphorus oligonucleotide analogues, proved as useful tools in molecular biology, the potential of phosphorothioates⁽¹⁾ and methanephosphonates⁽²⁾ is most widely ex**plored. Due to the chirality at phosphorus centre they are obtained as a mixture of diastereo**mers, sometimes enriched in one or another isomer⁽³⁾. However, in many studies P-chiral oligo**nucleotide analogues with defined sense of chirality are desired. Therefore, the mixture of dia**stereomers have to be separated by a tedious chromatographic techniques⁽⁴⁻⁶⁾. Recently we have **reported a stereospecific approach to the synthesis of diastereomeric 2'-deoxyadenylyl(3',5')2' deoxyadenylyl phosphorothioates(7)+ Similar methodology was also used for the stereospecific synthesis of thymidylyl(3',5')thymidylyl methanephosphonates(s) and homochiral oligo(thymidine methanephosphonates)(g).**

In our earlier attempt to the stereospecific formation of P-chiral phosphorothioate internucleotide linkage we have used methyl group for sulfur protection t7). Unfortunately, in contrast to demethylation of internucleotide 0-methylphosphate by treatment with a mixture of thiophenol and triethylamine in dioxane, which is fast and virtually quantitative reaction⁽¹⁰⁾, the deprotec**tion of thiolo- function of S-methylphosphorothioate under the same reaction conditions, requires several hours and the process is accompanied by side product formation(7). In a search for a better S-protection of phosphorothioate we decided to utilize 2-nitrobenzyl group. It should be more readily removable than methyl group due to electronegative properties of its Z-nitrophenyl moiety, thus facilitating an attack of thiophenoxide ion on the carbon atom of methylene group. Indeed, we have found that deprotection time is ca 150 times shorter (less than 5 min.** instead of 12 h)⁽¹¹⁾ if 2-nitrobenzyl instead of methyl group is used as protection of thiolo**function of phosphorothioate.**

The internucleotide bond is formed in the stereospecific substitution of aryloxy group of P-chiral nucleotide component, 5'-0-monomethoxytritylthymidine 3'-0-[O-(4-nitrophenyl)-S-(2-nitrobenzyl)phosphorothioate] (2) by base activated 5 '-hydroxyl function of 3'-0-acethylthymidine or 5' deprotected oligonucleotide 3 (SCHEME II). The synthesis of 2 is outlined in Scheme I. The phosphorylation of 1 with 0-(4-nitrophenyl)-N-phenylamidochloridate and PN->PS conversion of resulted phosphoranilidates into phosphorothioates were performed according to the method described earlier^(12,13), The crude mixture of diastereomeric phosphorothioates, obtained in 75% yield,

was S-alkylated without further purification by treatment with two equivalents of 2-nitrobenzyl bromide in acetone solution, Crude product of alkylation was obtained in 80% yield. The diastereomers of 2 were separated into individual species [2a, 8³¹P 24.99 and <u>2b</u>, 8³¹P 24.64 ppm **(CaHe)l** by means of column chromatography on sil.ica gel using acetone-chloroform as eluting solvent (14) . Some losses of 2 during chromatography were observed, probably due to its partial decomposition.

hssuming, that the relationship between absolute configuration at phosphorus and the chemical shift in $31P-NMR$ observed for diastereomeric $5'$ -O-monomethoxytrityl-2'-deoxyadenosine $3'$ -O-[O- $(4-nitrophenyl)-S-methylphosphorothioates]$ described previously (15) will also hold for diastereomeric pair of 2 we have assigned the Sp-configuration for the isomer of $2a$ absorbing at lower field in ${}^{31}P-NMR$. The activation of the hydroxyl function of nucleoside component, $3'-ace$ tylthymidine, and its further reaction with $(S_P) - 2a$ or $(R_P) - 2b$, were carried out similarly as described earlier⁽⁸⁾ but anhydrous pyridine has been used as the reaction medium, Thus, the 2,15M solution of t-butylmagnesium chloride (10% molar excess) in dry THF was added under argon to the solution of $3'-0$ -acetylthymidine in dry pyridine. To the resulted suspension of $5'-$ hydroxyl activated nucleoside (30% molar excess) a solution of $(S_P)-\underline{2a}$, or $(R_P)-\underline{2b}$ containing 15% $(S_P)-2a$, in pyridine was added and the reaction mixture was stirred at room temperature for 8h. The reaction is extremely water-sensitive and must be carried out under an inert atmosphere. The efficiency of coupling reaction leading to dinucleotides 3 was 50-95% as determined by $31P-NMR$ spectra of the crude post-reaction mixture. The only side-product observed $(\delta^{31}P_118.87$ ppm) resulted probably from the monomer 2 hydrolysis. The diastereomeric purity of $3a$ originating from (S_P) - $\underline{2a}$ was ca 100% (no signal of another isomer was observed) and that of $\underline{3b}$, originating from $(R_P)-2Q/(S_P)-2a$ mixture was ca 75%. Taking into account accuracy of measurements ($\pm 5\%$) it is consistent with the diastereomeric purities of substrates 2 , and speaks for stereospecificity of the coupling reaction.

After standard work-up, the dinucleotides $3^{(16)}$ were purified by means of preparative TLC on silica gel plates using 5% **CH3oH** in **CHCl3 as** eluting solvent system. They were next deprotected in the following reaction sequence: i/C6HsSH/(C2Hs)3N/dioxane (2:2:1)⁽¹⁰⁾, ii/ 25%NH3aq/CH3OH $(3:1)^{(17)}$, iii/ 80% CH3COOH⁽¹⁸⁾ yielding dithymidine phosphorothioates $\underline{5}$. The crude $\underline{5}$ were purified by means of preparative TLC on cellulose plates developed in i-proH/NHsaq/HzO (7:l:Z) as solvent system. The absolute configuration at phosphorus in diastereomers of $5^{(19)}$ was determined by means of chemical shift criterion in $^{31}P-NRR$. The comparison of $^{31}P-NRR$ spectral data of individual isomers of 5 with those described in literature $(20, 21)$ allowed us to ascribe Spconfiguration to 5a originating from $(S_P)-2a$ absorbing at higher field, and RP-configuration to

Cn the basis of the enzymatic criterion we were able to assign the Sp-configuration to diastereamer of $5a$ originating from (S_P) -2a and R_P-configuration to the other diastereomer of $5b$ obtained from $(R_P)-2a$. This correlation is consistent with above assignment done by means of chemical shift in $31P-NMR$ criterion, and confirms inversion of configuration at phosphorus of 2 in coupling step.

For the synthesis of 5'-O-monomethoxytritylthymidylyl(3',5')thymidylyl(3',5')(3'-O-acetylthymidine) di{O,O-[S-(2-nitrobenzyl)phosphorothioate]}($\frac{4a}{3}$) and ($\frac{4b}{3}$), diastereomerically pure 3 were used. Deprotection of $5'$ -hydroxyl function of $(S_F)-3$ and $(R_F)-3$ was achieved by treatment of fully protected dinucleotide 3 with 80% acetic acid for $3h^{(18)}$. Simple repeated precipitation procedure yielded detritylated, chromatographically homogenous product suitable for the next coupling reaction without further purification. Fully protected trinucleotides (S_P, S_P) -4a and $(R_P,R_P)-4b$ were prepared by the reaction between 5'-deprotected, 5'-activated derivative of dinucleotide $(S_F) - \underline{3a}$ or $(R_F) - \underline{3b}$ and diastereomerically pure monomer $(S_F) - \underline{2a}$ or $(R_F) - \underline{2b}$, respectively. The general procedure was the same as for synthesis of 3 , except that a 50% molar excess of t-butylmagnesium chloride for activation of 5'-deprotected dinucleotide 3 and equimolar amount of monomer (S_p) -2a or (R_P) -2b for coupling reaction, were used. The efficiency of coupling reaction leading to trinucleotides 1 was somewhat lower than for 3 and was up to 50% for 4a and up to 60% for 4b as estimated by means of $31P-NMR$. The work-up and purification of $4^{(23)}$ were the same as described above for 3. The removal of S-protecting 2-nitrobenzyl group achieved in the reaction with thiophenolate ion⁽¹⁰⁾ was near quantitative. The $3'-$ and $5'-$ hydroxyl function deprotection was performed as for $\frac{3}{2}$, according to the literature methods $(17,18)$. Assuming, consistently, inversion of configuration at phosphorus of 2 in second coupling step, the (S_P, S_P) - and (R_P, R_P) -configuration were ascribed to suitable trinucleotides $\underline{4a}$ and $\underline{4b}$ and subsequently to 6a and $6b^{(24)}$ originating from (S_F) -2a and (S_F) -3a, and (R_F) -2b and (R_F) -3b, respec**tively.**

The absolute configuration assignment at phosphorus of homochiral trinucleotides & and sb was confirmed by their comparison by means of $HPLC⁽²⁶⁾$ with original samples obtained independently **according to literature** method based on nonsteraospecific synthesis and separation of diastereomers $(4, 25)$.

The stereospecific synthesis of longer oligo(nucleoside phosphorothioates) with defined sense of chirality at phosphorus is now under study.

ACKNCWL,EDGMEQS: The authors are indebted to Prof. Wojciech J. Stec for his inspiring interest

in this work.

The project was financially assisted by the Polish Academy of Sciences,

Grant no CP8R 3.13.4.

REFERENCES

- 1. F.Eckstein, Ann.Rev.Biochem., <u>54</u>,367(1985)
- 2. **P.O.P.Ts'o, P.S.Miller, J.J.Greene, in "Development of Target-Oriented Drugs ",Y.Ch.Cheng, B.&z, M.Minkoff (Eds.), Raven Press(1983),189**
- 3. R.Cosstick, D.M.Williams, Nucl.Acids Res., $15,9921(1987)$
- 4. W.J.Stec, G.Zon, W.Egan, B.Stec, J.Am.Chem.Soc., 106, 6077 (1984)
- 5, W.J.Stec, G.Zon, W.Egan, R.A.Byrd, L.R.Phillips, K.A.Gallo, J.Org.Chem., <u>50</u>,3908(1985)
- 6. S.B.Katti, K.Agarwal, Tetrahedron Lett., $27,5327(1986)$
- 7. Z.J.Lesnikowski, A.Sibinska, Tetrahedron, 42,5025(1986)
- 8. Z.J.Lesnikowski, P.J.Wolkanin, W.J.Stec, Tetrahedron Lett., 28,5535-5538 (1987)
- 9. Z.J,Lesnikowski, M.Jaworska, W.J.Stec, Nucl.Acids Res.,lG,OOOO(1988)
- 10. G.W.Daub, E.E.van Tamelen, J.Am.Chem.Soc.,<u>99</u>,3526(197
- 11, **Benzyl-, 4-chlorobenzyl- and 2,4-dichlorobenzyl-** groups were reported recently as S-protection in the synthesis of nucleoside alkanephosphonothioates. The recorded deprotection half-times at room temperature were 285, 230 and 110 min, respectively. $W.K.-D.Brill, M.H.Caruthers, Tetrahedron Lett.$, $29,1227(1988)$
- 12. Z.J.Lesnikowski, W.Niewiarowski, W.S.Zielinski, W.J.Stec, Tetrahedron, <u>40</u>,15(1984)
- 13. W.J.Stec, Acc.Chem.Res., <u>16</u>, 411 (1983)
- 14 , (Sp)- $2a$; TLC: 0.28[CHCl3-(CH3)zCO(90:10)], UV:\min247, \max268 nm(96% CzH5OH), $6^{34}P24,99$ ppm(C6H6). (Rp)-2b; TLC: 0.24 [CHC13-(CH3)2CO(90:10)], UV: λ_{min} 245, λ_{max} 266 nm(96% C2H5OH), h31P24,64 ppm(CsHs).
- 15. Isomer of 5'-O-monomethoxytrityl-2'-deoxyadenosine 3'-O-[O-(4-nitrophenyl)-S-methylphosphorothioate) absorbing at lower field has SP- while its counterpart absorbing at higher field has R_{P} - configuration (7) .
- 16. (SP)-3a; TLC: 0.29[cHC13-cH3cH(95:5)J, *W: lain245,* **A.,,264 nm(96X C2H5m), E31P28.46 ppn(CHCl3).** (Rp)-3b; TLC: 0.34[CHCl3-CH3OH(95:5)], UV: λ_{min} 245, λ_{max} 264nm (96%C2H5OH), **631P28.52 ppm (CHC13).**
- 17. **J.P.H.Verhevden. J.G.Moffat in "Svnthetic procedure in Nucleic Acid Chemistry",** W.W.Zorbach, R.S.Tipson (Eds.) Interscience Publ.(1968),383
- 18. H.Weber, H.G.Khorana, J.Mol.Bio1.,72,219(1972)
- 19, (Sp)-<u>5a</u>; TLC: 0.54[i-PrOH-NHjaq-H2O(7:1:2)], UV: ^min237, ^max266 nm(96% C2H5OH), δ³¹P55.97 **ppn(DzO).** (RP)-5b; TLC: 0.54 [i-PrOH-NH3aq-H2O(7:1:2)], UV: λ_{min} 236, λ_{max} 266 rm(96% C2H5OH), 631P56.30(DzO)
- 20. P.A.Bartlett, F.Eckstein, J.Biol.Chem.,<u>257,</u>8879(1982)
- 21. B.Uznanski, W.Niewiarowski, W.J.Stec, Tetrahedron Lett., <u>23</u>, 489 (1982)
- 22. W.J.Stec, G.Zon, Tetrahedron Lett.,25,5275(1984)
- 23. **(SpSp)-a; TIC:** 0.3l[~Cl3-~3oH(94:6)], *W: hmin* **254, X.,x258 nm(96% C2H50H),63"P29.49** $ppm(CDC13)$.(RpRp)-4b; TLC: 0.37[CHC13-CH3OH(94-6)], $W: \lambda_{max} 258$ $nm(96\% \text{ C2H5OH})$, $\delta^{31}P30.01$, **29.54 ppn(cIx13)**
- 24. **(SPSP)-&; TLC: 0.39[CH3C?+HzO(90:10)],** W: **Amin237, Alar262 nm(96% C2H5m),** 8"'P55.32, 55.27 ppm(D₂O).(R_{PRP})-6b; TLC: 0.40[CH₃CN-H₂O(90:10), UV: λ_{min} 243, λ_{max} 259 nn(96% C₂H₅OH), $6³¹P55.48, 55.43 ppm(D₂O)⁽²⁵⁾.$
- 25. **W.J.Stec, G.Zon, B.Usnans ki, J.Chromatogr., 326,263 (1985)**
- 26. ODS Hypersil 5µ, 4.6x300mm column, linear gradient from 5% to 40% CH3CN in 0.1M TEAB, **0.4%CHaCN/min.**

(Received **in** UK 6 June 1989)